

Business Cases für Speicher und regulatorische Hemmnisse

Dr. Rainer Saliger, Technology & Innovation, Energy Management Division Siemens AG, Erlangen

Contribution of renewables to electricity supply in Germany

Restricted © Siemens AG 2015 All rights reserved.

Source: https://www.bdew.de/internet.nsf/id/20141023-pi-strom-und-gasverbrauch-ruecklaeufig-de

Ambitious German RE targets require highly flexible back-up systems

80% German electricity load coverage from Renewabes

(Net Power Generation and load, red line, in GW)

Biomasse

Laufwasser

10% German electricity load coverage from Renewabes

(Net Power Generation and load, red line, in GW)

Konventionelle

Stromnachfrage

Quelle: Agora Energiewende, 07.01.2015

Role of energy storage for German Energiewende

SIEMENS

Uneven build out of renewables create integration challenges on a regional level

Energy storage is one of 4 major flexibility options to cope with increased volatile renewable build out

e.g. Flexibilise Demand with Smart tariffs

Cross-regional electricity transfer and integration of distributed generation

e.g. Grid stability and system efficiency; time shift of "excess electricity"

e.g. cost-efficient use of conventional power supply and backup capacity

Bottom up analysis of storage market - Storage used for very different purposes

Source: Siemens AG

Restricted © Siemens AG 2015 All rights reserved.

Page 7 2015-06-08

Different technologies available for various use-cases – not all developed to full maturity

Restricted © Siemens AG 2015 All rights reserved.

1) Compressed Air Energy Storage Source: Siemens

Electricity Storage attractive today in use-cases with high power prices or grid quality issues

Restricted © Siemens AG 2015 All rights reserved.

Combination of various revenue streams are needed to make storage a viable business case – regulation may not hamper multiple use cases

Volatile Power Plants - Onshore Wind

Description and expected geographic focus Onshore wind-plants Main motivation: Offer ancillary services (primary operating reserve) + Increase wind yield (e.g. ramp rate control) + Avoid/Reduce forecasting error and increase yield in direct marketing + Reduce curtailment losses 2020 2014 2020 2014 Tbd 2014 2020 2014 2020 2020 2014

Typical installation (used for illustrative business case)

- Storage is co-located with 10 MW wind-park, 3000 full load hours.
- Storage: Li-Ion Battery System
 - Power: 2 MW
 - Capacity: 1 MWh

Main drivers of business case: assumptions **Technical / Commercial** Market value Primary reserve 2014 | 2020: CAPEX 2014 | 2020: 3,000 | 2,500 €/MW/week 2,3' |1,4' € (1100 | 720€/kW) Bids accepted: 60% | 50% Efficiency (AC-AC): 87,3 % 2% increased yield of wind turbines Cycles: 2/day due to storage System lifetime: 20 years Avoided balancing energy of 2€ | 3€/MWh (direct market.) WACC: 7% Curtailment losses 2% | 5%, 20% not compensated

Negative business case

Close business case

Positive business case

Key regulatory topics in relation to storage

Regulatory topic	Impact on storage business case
 Definition of Storage → Is it generator or consumer 	 Impact on grid fees to be paid by storage
Who is allowed to own / operate storage systems?	 Could DSOs/TSOs make use of benefit in combination with other market based benefits?
Is storage acknowledged as an asset of the grid?	 Could be substitute to traditional grid enforcement if guaranteed ROI is give in regulated market
 Storage Subsidies / Surcharges for self consumed electricity Participation of behind the meter storage systems in energy markets 	 Effects business case for behind the meter storage Allows combination of use cases
 Qualification conditions for balancing markets Are system services (e.g. speed and accuracy of system reaction) valued by market design? 	 In a system consisting up to 100% of inverter connected generation system dynamics change, there is currently no market mechanism in D
 Smoothing / Balancing Requirements for PV and Wind farms and Grid codes 	 Encourages RE operators to contribute to power system stability

Restricted © Siemens AG 2015 All rights reserved.

By comparing Top down storage demand with Bottom Up Business case analysis need for regulatory action can be derived

1. Top-Down Demand side approach: based upon mismatch between volatile supply and demand

no relation to share of renewables

Restricted © Siemens AG 2015 All rights reserved.

Vielen Dank!